STUDENTS
FOCUSING CLASSROOMS ON CHALLENGING WORK
CENTER STAGE

Essays by
STEPHANIE SUN | ZEKE PHILLIPS | ERIN DUKESHIRE | ERICA MARIOLA
REACHING FOR HIGHER STANDARDS

Great teachers have an appetite for challenge, and they inspire students to respond to difficult work in the same way. That’s one of the reasons why we award the Fishman Prize for Superlative Classroom Practice every year, to shine a spotlight on public school teachers who demonstrate exceptionally effective teaching with students from high-poverty communities. Founded in 2012, the Prize is named for Shira Fishman, a TNTP-trained math teacher who has experienced a tidal wave of recognition for her achievements at McKinley Technology High School in Washington, D.C., where she continues to teach today.

Our selection process becomes more rigorous each year. In 2015, more than 5,000 teachers were nominated and nearly 800 teachers completed an exhaustive application. Almost 100 of those were invited to submit teaching videos, and 20 were selected as semi-finalists for unannounced classroom observations by TNTP. At last, 10 finalists were interviewed by an expert panel of judges, including Shira Fishman. Just four were named winners.

Fishman Prize winners receive $25,000 each, one of the country’s largest monetary awards for practicing teachers. Yet the prize goes far beyond financial rewards. During the summer of their award year, they collaborate in a month-long virtual residency, reflecting on their classroom practices, exploring the larger issues that shape their profession, and contributing to TNTP’s own efforts to understand and support great instruction.

The 2015 residency included visits to Boston, Memphis, and Washington, D.C., where the winners met with top educators, researchers, policymakers, philanthropists, journalists, and community leaders. Their travels took them from the Harvard Graduate School of Education in Cambridge to the National Civil Rights Museum in Memphis to the West Wing of the White House, offering the winners a chance to explore the education landscape while making their voices heard to decision-makers and thought leaders.

When four of the nation’s best teachers have the opportunity to devote a month to reflecting on the hard work of teaching, the entire profession wins. A central part of the residency is the chance for the winners to capture some essential elements of their practice in writing, telling the stories of their classrooms in their own voices. We publish these essays in an annual collection highlighting the skills and strategies the Fishman Prize winners use to achieve extraordinary results. We’re pleased to share the fourth such collection with you now.

CONTENTS

Hacking the Writing Process
STEPHANIE SUN
2

Giving Students the Mic: Poetry and Performance in the Classroom
ZEKE PHILLIPS
8

Becoming Scientists
ERIN DUKESHIRE
14

My “Friends” Are Teachers, Too
ERICA MARIOLA
20
“We’ve simply been blown away by these educators. They are the epitome of reflective practitioners, models of inspiration, and the types of teachers we want for each child in this nation. We are humbled to honor them with the Fishman Prize and have been privileged to work alongside them during the summer residency.”

—TNTP Vice President Ana Menezes, a 2015 Fishman Prize judge

MAKING STUDENTS’ THINKING VISIBLE

At a time when school systems across the country are striving to help students reach higher academic standards, many people are naturally focused on the role of the teacher at the front of the class. What can educators do differently to make sure that students master the skills they need for future success?

Too often, the work students do in the classroom gets lost in that conversation. Not enough attention is paid to the rigor of course content and the nature of the work students are asked to do. Yet that makes an enormous difference in every grade level and subject area, from kindergarten through high school, from the quality of an argumentative essay to the validity of an experiment. Challenging work—and the way students respond to that work—matters as much as anything else in the classroom.

New teachers hear this advice all the time: The students should be working harder than you. But how do great teachers actually make that happen? How can they cede responsibility for learning to students precisely when it feels like teachers should be doing more than ever? This is the issue our 2015 Fishman Prize winners chose to address in these essays: *How can teachers put their students center stage, focusing the classroom on rigorous work and thought-provoking discussion?*

Making sure that students are doing most of the work requires teachers to hone their classroom practice, designing lessons and assignments that make student thinking visible, bring misunderstandings to the surface, and lead to greater insight and deep conceptual understanding. By placing the responsibility for learning in the hands of students, the Fishman Prize winners hold their classes to the highest possible expectation: that students will do the thinking, imagining, and problem-solving.

It’s precisely the opposite of the “drill and kill” exercises that some parents fear go hand-in-hand with higher standards and rigorous assessments. In classrooms across the country, the Fishman Prize winners are teaching students to compose reasoned arguments, question the nature of the universe, recite poems on a stage, and even teach other little ones their ABCs. Each of these teachers has found novel yet simple ways to rapidly assess what students are thinking and empower them to lead the learning process—strategies that teachers of any kind can borrow and adapt.

Prepare to visit four amazing classrooms. As you’ll see, this caliber of teaching and learning isn’t easy. It’s the result of years of practice filled with challenges. But these essays show what’s possible when teachers let their students grapple with doubt and difficulty, working their way toward clarity—and mastery.
Affectionately nicknamed “Ms. Sunshine” by her students, Stephanie brings joy, warmth, and a sharp sense of focus into her fifth-grade classroom at Achievement First Brownsville Middle School. “Stephanie is the definition of joyful rigor,” her academic dean states. “When watching her teach, in a typical minute it is not uncommon to see silent ‘raise the roof’ gestures to praise a kid, high-fives for great answers, and endless props and smiles. She exudes joy in her classroom; she exemplifies love for kids and for her craft at a level that is rare to find.”

At the same time, she continues to hold her students to high expectations and lead them to monumental gains. On the new, Common Core-aligned 2014 state exam, Stephanie’s students achieved nearly four times the proficiency rate of other fifth-grade English students from the same neighborhoods in Brooklyn.

When Stephanie started her career in 2010 as a Teach For America corps member in New Haven, CT, a city struggling with one of the largest achievement gaps in the country, her students averaged 1.5 grade levels of reading growth each year. Now, in only her fifth year in the classroom, Stephanie is adamant about sustaining and growing that impact over the long term. “I’ve known since I was 10 years old that I wanted to teach,” she says. “I know I have to do this for as long as I can. There’s no other job in the world.”

One of Stephanie’s gifts is understanding and appreciating what it’s like to be a fifth grader. She keeps herself as open and enthusiastic as her students, bringing a natural sense of curiosity and ingenuity to her work and always looking for new ways to push her students further. Her attitude is infectious, so it’s easy to see how her classroom would share her infectious spirit about learning.

In Stephanie’s essay “Hacking the Writing Process,” she shares how she uses technology in the writing classroom to give all of her students targeted support, while seeming to be everywhere and nowhere at once.
I’m not at the front of the room. I’m in the back, and their work is at the center. By stepping aside, I give my students the space to grapple with difficult material, using technology to steer their own writing in the right direction.

Stepping into my writing class, all you might hear is the clack of keyboards in an otherwise silent classroom. One student finishes her outline as another loads up the online rubric on his screen. A pair of students begin the “speedy scholars” assignment, peer editing each other’s essays from opposite sides of the room. Malakhi and Erik catch up with me at the back table because they were absent yesterday (and could always use a little extra TLC).

Though our writer’s workshop is often silent, there is a frenetic energy in the room. Papers shuffle, keys click, students conference, and screens flash. It isn’t often you see 30 fifth graders running their own classroom.

But in our writer’s workshop, there are no hands in the air. Everyone works at his or her own pace. If you peer into my students’ screens, you will see an online community of writers, complete with secret messages, feedback bubbles, and interactive rubrics. I’m not at the front of the room. I’m in the back, and their work is at the center. By stepping aside, I give my students the space to grapple with difficult material, using technology to steer their own writing in the right direction.

Busy Bodies
I used to think a well-managed classroom was the hallmark of a great teacher. So long as my kids were quietly working, I thought I had done a great job.

I remember how Emmanuel, an average writer with off-the-charts confidence, would show a triumphant thumbs-up a mere 10 minutes into the independent writing block. I would hear, “I’m already done, Ms. Sun,” accompanied with a “what else you got?” look on his face. Though I knew he wasn’t done, I didn’t have time to look at Emmanuel’s essay in the moment, so I would vaguely instruct him to “check your work.” Having been given no clear direction or guidance, Emmanuel was left to his own devices, without a clue what to edit. Instead, he would search for his favorite online games, quickly minimizing those tabs when I finally did come around.

After class, I would sift through similar essays, a wave of stress washing over me as I tried to diagnose my own missteps. I wasn’t doing right by my kids and my instruction was missing something key.

The push I needed to truly change my practice came when I learned more about the demands of the Common Core. With their emphasis on having students write about complex texts in a variety of genres, the higher standards would require my students to tackle writing prompts on their own, and to constantly self-monitor their progress and the quality of their written work. I needed to cultivate a classroom that allowed my students to take ownership of their learning.

This was a little scary at first. I was uncomfortable with so much silent work time. It became a joke at school that “writing teachers don’t do anything in class,” that the kids just “play on the computers.” There was an element of truth to it. It was hard to see what role the teacher was playing. But even though it may not have been obvious at a glance, I was investing time and energy into a few key structures of my practice: feedback, conferencing, and real-time data analysis.

Shortening the Loop
With Emmanuel, returning his essay the next day with comments was too late. I knew he was able to apply the feedback, but not retain it. I had to shorten the feedback loop to really improve student writing and ultimately, student thinking.

Being relatively technologically challenged myself, I found the most success when I kept it simple. In my classroom, we use Google Docs for writing assignments. It started as an easy way for students to complete and turn in their work, but it has ended up becoming a powerful tool for engaging students
in the writing process, thanks to the magic of the comment bubble. It’s a little like hacking into the writing process. By commenting on writing in the moment, via my own computer, I support students not from the front of the classroom, but from the back.

On this day in class, I break the steady silence of workshop as I announce, “Zahava, comment.” Her eyes grow wide as her head dips down to the bottom right-hand corner of the screen, anxiously waiting for my secret message to pop up.

Zahava turns around after reading my comment and nods vigorously as she edits the highlighted sentence.

She has selected pertinent evidence from the nonfiction source we researched for our Ancient Polynesian navigation essays, but she’s been struggling with her analysis of that evidence. I watch her type and see her apply my feedback immediately:

“This shows how the Ancient Polynesians used the natural resources around them to navigate the Pacific Ocean.”

She turns around and her eyes seek my approval. I simply type back, “How did you fix it?”

Zahava writes, “I used the phrase ‘natural resources’ in my analysis since it was in my assertion.”

I give her a thumbs-up and she wiggles happily in her seat. She moves on to the next part of her essay as I move on to the next student on my list.

Our interaction takes no longer than two minutes, and the rest of the class remains focused throughout. Zahava is now reminded that all of her analysis sentences should relate back to her assertion. She knows I’ll steer her when she’s off track, but she also has the confidence to monitor her own work. Behold: the power of the magic bubble.

A common trope is that great teachers have eyes in the back of their heads. I’ve taken this to another level by being able to view every student’s screen on my own, using a program called Hapara Dashboard that allows me to view which tabs they have open (including the occasional Google image search of Nike Airs) and even share documents in real time. When I see Diondre load up a Google Hangout, I close out of the tab from my own computer. His little body jumps out of his seat as he scans the room for the interloper. Once I am spotted, he gestures wildly and mouths, “Are you serious?”

I mouth back, “Are YOU serious?” and I mime for him to get back to typing. Begrudgingly, he gets back to work, reminded that there are no shortcuts in life.

When the focus of class is not on the teacher but instead on the work, students’ hands go down as their level of independence goes up. Teacher moves become less important than the self-monitoring of 30 students, all working with confidence at their own pace. Students wrestle with the content of what they’re writing, but are also given the space to troubleshoot with CTRL+Z when they think everything has been erased. When I do intervene, it does not disrupt the flow of their writing; instead, it is an unobtrusive redirection that pushes students to think about their own words. With technology, I am at the back of the classroom, yet closer to their work and thinking than I could be anywhere else.

Despite my panoramic view, it’s impossible to read every student’s writing in real-time. I must still pre-plan conferences with students, and I also have to know my kids as writers and predict their mistakes.

Come on Down!

Despite my panoramic view, it’s impossible to read every student’s writing in real-time. I must still pre-plan conferences with students, and I also have to know my kids as writers and predict their mistakes.

While everyone is working, I secretly open up Erik’s, Malakhi’s, and Tati’s essays to find what I had anticipated: They all used first person in their thesis statements. Based on their most recent interim assessment data, I had already sorted them into the “first person” conferencing group. These three repeatedly proved they were allergic to the argumentative third person, a key conceptual shift from fourth- to fifth-grade writing.

Now, like the announcer on the Price is Right, I break the Zen-like silence of my classroom: “Erik, Malakhi, and Tati… come on down!”

Erik groans and reluctantly drags his feet to the back table. Malakhi bounces over, talking a mile a minute about what he’s working on. Tati scurries over with her computer, happy that she gets some one-on-one time today. The rest of the class

Comment from Ms. Sun: Zahava: Great use of specific evidence here. Can you try to explain it more clearly for your reader? How does this evidence relate to your assertion?

Comment from Zahava: Ok. :-D
continues to work, un-phased by the movement in the room, focused on their own tasks for the day.

“Great writing so far, guys, we just have to fix one mistake. Open up your screens and watch what I type.”

All three students glue their eyes to their screens as they anxiously await my move. I copy and paste a thesis statement from another student underneath their own examples. Erik stares at me in disbelief. “How did you do that?”

“Magic,” I say with a knowing grin. “What’s the difference between the thesis I just sent you and your own? Talk it out.”

The three authors dive right into a conversation, peering at each other’s screens and pointing at the specific words they’re referencing. Their backs are to the class so that I can still see the rest of my writers. Soon, I hear the right answer. Knowing she struggles with this skill, I cold-call Tati.

“The one you sent us sounds better because it doesn’t state an opinion with ‘I think’.”

“I think’ is not as convincing as just stating the facts,” Malakhi chimes in.

“Now I know what to do!” Erik announces.

“Do your thing and edit before going back to your seats. Nice job problem-solving together!”

All three eagerly fix up their theses and flip their screens to show me their newly edited work. I see the “I think” statements being deleted, but I also see Erik grappling with the words from the prompt. Instead of writing, “I think the Polynesians used the stars,” he’s changed his thesis to, “The Ancient Polynesians were able to navigate by using stars…” Before he goes back to his seat, I ask him to explain to me what he did.

“I had to go back to the question to find the right words to use.”

Not only was Erik able to fix this essay, but he has discovered the relationship between a prompt and a thesis on his own. A smile creeps onto Erik’s face as he hunches over his computer eagerly. I suspect there will be no groaning tomorrow.

By being able to quickly see a spectrum of work, I am able to group students together and intervene with more purpose, re-teaching only when I need to without disrupting the work time of the whole class. I don’t need eyes on the back of my head when I have them on every screen.

I Interrupt This Message...

Interventions like these don’t just happen—they must be planned. To do this, I need data on my students’ progress, and I need to analyze that data quickly to make decisions about how to adjust my instruction.

These simple prompts for data-driven decisions, provided by the brilliant managers of the writing curriculum at my school network, lived as a sticky note on my clipboard all year:

- If most get it… Show an example and have seat partners evaluate
- If half get it… Show a high and a medium example; then have seat partners evaluate
- If few get it… Show a misconception and lead a discussion

I collect data on trends and misconceptions during class by looking for visual cues. Sometimes, I ask students to color code a transition to gauge who needs help and who’s got it. Other times, I ask students to bold certain statements and insert a comment describing their thinking. I use this information during class time to check for (mis)understandings, unscramble errors in the moment, and tailor the next day to my students’ needs. Using this data makes for purposeful interruptions that are student-led as I take on the role of facilitator.

“Pac-Man your screens and glue your eyes to the work on the board. We can give some love to La’Riah, today’s featured author.”
La’Riah puts one hand to her chest and her mouth drops open as if she’s won an Oscar. Her classmates cheer because La’Riah hasn’t always had the best track record in her classes. To see her writing displayed prominently on the board is a big deal.

“Glow and a grow?” I ask. “La’Riah, you get to choose.”

She chooses a friend who detects that her assertion is in third person (a glow!) and another who proposes she should capitalize “Polynesians” (a grow!).

After this last comment, a couple of students put up “disagree” hand signs, indicating there are other possible, stronger improvements to be made. I give my students some time and space to think about more precise critiques.

“Turn and talk to your buddy: What is missing from La’Riah’s assertion? Be ready to share.”

Voices excitedly turn on to discuss her work. In a natural pause in their conversation, I warm-call a student who has been struggling with the same concept.

“Angel, tell us how La’Riah can strengthen her assertion.”

“She needs to make it more clear what she’s talking about.” This is far too vague and the rest of the class won’t be able to transfer this to their own work. I probe a little deeper.

“I wonder who can help Angel and give La’Riah an action to do, based on the CFS…” I say with a poker face.

Immediately, students open their screens to today’s digital classwork and scroll to the Criteria for Success. Soon, hands begin to shoot up. I ask La’Riah to “phone a friend.”

“La’Riah needs to use words from the thesis in her assertion.”

A sea of frantic “co-signs” or “I agree” hand signals fills the room. La’Riah says “ohh!” out loud and everyone giggles.

“There’s that light bulb!” I say. “You get the last word, La’Riah: What are you going to change in your assertion?”

“I forgot to add in the phrase ‘traverse large bodies of water’ to my assertion since it’s in my thesis.”

I bring over my “That Was Easy” button from Staples, which La’Riah hits triumphantly.

“Just like La’Riah, make sure you’ve used words from your thesis in your assertions. Bold them so I can see your thinking. Maybe yours will be featured next!”

By putting student work at the center of our classroom, one writer’s insights provide an entry point into the work of so many others. Instead of a teacher-led lecture, students analyze each other’s work and are quickly back in their own writing—which is the point, right?—zooming in closely on their own word choices. Today, they’re making the larger conceptual connection between their thesis argument and their smaller claims. La’Riah, who is more often in the hallway than in the classroom, radiates with confidence, despite the fact that a flaw was illustrated in her work. Soon, the silence falls again, interrupted only by the steady typing that results from writers who know what to do and how to do it.

Afterward, I quickly gauge the success of my interruption: I see students re-evaluating their assertions, then scrolling back up to revise their theses. I see that Chris has color-coordinated his thesis and assertion words to check himself. I see that 27 out of 29 students—all at different stages of the writing process—have bolded their topic words, thereby reminding themselves of the structural power of assertions. Though Za and Terrance

CHRIS’ SYSTEM OF COLOR CODING:

Once Chris has organized his writing, he can then move on to the editing phase. My students know that once we get our thoughts down on paper, we always go back and edit our spelling mistakes and typos. Content and conceptual understanding come first, followed by proofreading. Here’s how he tackles his first round of edits:

Thesis: Ancient Polynesians were able to traverse large bodies of water without any modern navigation tools by using waves, clouds, and birds.

Ancient Polynesians traversed by using waves. For example, “waves have a stable pattern that usually go toward the land.” In addition, if the Ancient Polynesians follow the wave pattern they will find there way to land. Therefore, when the ancient Polynesians were navigating to find land they would most likely follow the wave pattern.

When the Ancient Polynesians were last at sea they would look at the movement of the clouds. For example, because “the clouds would reflect the land the clouds would turn a muddy brown color.” In addition, when the Ancient Polynesians could not find the radish color on the clouds the Ancient Polynesians would look at the movement of the clouds. Therefore, this is how the Ancient Polynesians found there way to land.

Ancient Polynesians traversed large bodies by looking at the birds. For example, when the sky is...
have’t yet internalized this key point, I know I’ll reach them as I jot their names down in my “tomorrow” box on my data sheet. Success in my classroom is not measured simply by kids just “doing work,” but by the work itself.

Closing Bubbles

Too often, teachers rush to end class on time and expect students to be able to switch their brains’ focus from one type of content to the next. Part of the art of stepping aside is allowing students to reflect on their progress. At the close of each class, I ask students to consider:

What have I accomplished today?

How did I make sure my work was top quality?

What steps must I take tomorrow?

With two minutes of class remaining, I ask, “Who improved their writing today?”

Hands shoot up as little bodies sit up straighter, taller, and with more confidence. I see the pride on their faces as I ask them, “Tell me what you did today and goal-set for tomorrow.”

Comment bubbles surface in their documents:

“I revised my analysis like a boss.”

“I used Imani’s feedback to fix my run-ons.”

“Remember to find the text evidence for paragraph three!” I say.

This metacognitive practice reminds me of my own nerdiness in college. I hear deep exhales around the room as students pat themselves on the back.

I give the class an air high-five and remind them there are only two days left before our Publishing Party, where we will celebrate our hard work by reading each other’s final drafts.

As class wraps up, I check in with Emmanuel.

“E. How’s it looking for tomorrow?”

He shuffles his papers and hurriedly shows me a list he’s made. “I gotta do a lot tomorrow. I got your comment, so I have to go back and find evidence for paragraph one, then I’m going to try the counterargument in paragraph two.”

Given guidance, the freedom to think, and a Chromebook to explore, Emmanuel is allowed to be himself. He works through his challenges and celebrates his triumphs. He’s only 10, but he deftly manages his own learning. He’s internalizing the habits necessary to succeed through college and beyond. And though I won’t have him next year, I know he’ll have the skills and confidence necessary to not only write about literature and history, but make it himself.

CLOSING THE TECHNOLOGY GAP

While visiting Collegiate, an elite private school on Manhattan’s Upper West Side, I saw students creating their own podcasts on their class set of iPads. I was impressed, but indignant. I knew I had to change the fundamentals of my research unit if I was going to really close the achievement gap.

The problem was that my students lacked fundamental technological skills. I had students typing with just their index fingers. Others struggled to log in because they forgot to hold down SHIFT to capitalize their names. Others did not know how to make the “@” sign and were denied access to key resources when asked for their email address. These were deficits, but my visit to Collegiate reinforced for me that we needed to embrace them as surmountable challenges. Technology skills are absolutely essential for my students’ futures. I knew my class could build foundational research skills that would prepare them for their lives long after they were finished being Brownsville Eagles. The first step was giving them a basic cheat sheet to help them master some basic keyboarding skills.

After we completely abandoned paper classwork and created an online hub of information, students were given the opportunity to engage with our increasingly digital world. They were able to organize their own research, keep a running glossary of terms they encountered in their readings, put on headphones if they wanted to revisit a BrainPop video or YouTube, reexamine an exemplar paragraph from the other day’s online classwork, and access our online calendar to pace themselves. With multiple tabs open and a diagram of essential keyboard tips on the screen (the magic of CTRL+C and CTR+V!), my students were able to adeptly conduct college-level research about an obscure topic. By believing that they would be able to, and arming them with concrete tools, they did.
Zeke Phillips is a classroom craftsman—persistent and determined to get it right. “There are not many nine-year veteran teachers who still crave feedback on plans, course materials, and lessons regularly,” says his principal. “Zeke’s hunger to grow and develop has not done anything but get stronger.”

His dedication shines through in the achievement of his predominantly low-income, Latino students at Excel Academy-Chelsea, one of two schools he has helped found. In the 2013-14 school year, Zeke’s incoming fifth-grade class began the year with a Developmental Reading Assessment average of a 3.5 reading level, one-and-a-half years behind where they should have been. By the end of the year, students had an average reading level of 5.1 years, demonstrating over a year-and-a-half of progress in a single year.

Zeke’s remarkable work hasn’t been limited to any one type of school or grade level. After graduating from Harvard’s Graduate School of Education in 2006, he taught for five years in New York, first at the Bronx Leadership Academy in NYC Public Schools and then at Democracy Prep Charter High School, before moving to Boston to found Excel Academy-Chelsea. In the 2015-16 school year, he is a founding ninth-grade English teacher at Excel Academy Charter High School. When asked about his variety of school environments, he says, “I’ve taken something different from each setting, as each school has provided me with opportunities to grow in ways I had not grown previously. I just really care about being in a good school.”

Thoughtful and meticulous, Zeke is as adept at planning lessons as he is at challenging assumptions and reframing discussions in challenging ways. Spend an afternoon with Zeke, and you’ll soon see why his kids love being in his class and why he’s able to get them to believe deeply that “anything is possible.”

In his essay “Giving Students the Mic,” Zeke takes us inside a creative writing unit, showing us how structure and gentle guidance can help students write poems they are proud to perform for their classmates.
It's a Tuesday morning in late December, and students are buzzing. In a few hours, they will begin a long-awaited holiday break. Yet today, vacation is far from their minds. Instead, their voices bounce off the classroom walls as they rehearse their poems for the final time, gearing up for our big Poetry Slam.

Soon, we will file down the eighth-grade hallway to Community Circle and take our seats on the blue plastic chairs reserved for special occasions. Soon, each of them will stand up in front of the entire grade—the entire grade!—and perform their best poems. Soon, they will exhale.

Three weeks earlier, we had kicked off our poetry unit. For three weeks, I helped my students develop as writers of poetry—and see themselves as poets, using the texts in front of them as launching points.

In years past, my approach to poetry had felt like a fill-in-the-blanks puzzle: I prescribed what students wrote about (“Write a poem about winter”) and how they wrote about it (“Start with a simile, add a metaphor, and shake for best results”). But real writing is messier, and I always had a nagging suspicion that we could do more. I was determined to move poetry writing—meaningful and messy—to center stage. If students can write poetry the way that poets do, they'll understand it more deeply. They'll enjoy it. They'll own it.

In my class, I give students specific strategies, tools, and feedback to build the flexibility and confidence necessary to be in command of their learning. This unit is emblematic of my larger approach: Students write high-quality poems that matter to them, not just to me. They develop the ability to write poetry without my support. They focus on the actual work of writing—and they feel proud enough to share what they create with a larger audience. It’s about performance—about them stepping up and speaking out while I step back. I set the stage, but they hold the mic.

The Little Three

It begins on the Monday morning just after Thanksgiving break. I walk into class with the eagerness that comes from having an ambitious but untested unit plan.

My 28 students sit in rows, their desks neatly organized with pens and pencils in the grooves and their independent reading books in the corners, a simple but important routine that signals that everyone is ready for class. I kick off the unit with a question: “What do you know about poetry?”

They talk with partners to break the ice, and I strain to catch their words as I walk about the room. Soon, we come back together, and hands go up.

“Poems contain stanzas and lines,” says one student—we’ll call him Sammy. Many students snap.

“Poems don’t always have to rhyme!” offers Nia. Murmurs of recognition echo through the room.

“I think that poems can be light and playful, but they can also be heavy and serious,” says Lauren, tentatively. Many students nod.

“That’s great. But how do we know a poem when we see one?”

We turn our attention to the handout and dig into two poems: “Let it Go,” from the movie Frozen, and “This is Just to Say,” by William Carlos Williams. In reading these poems, I want students to see that poetry contains key components that can both inform our understanding and influence our reading of this genre. Specifically, poems are about a topic, told by a speaker, and describe something about the topic. Topic, Speaker, Description—we call this a “Little Three,” and we use this framework to capture what makes a poem.

But the work we’re doing this morning isn’t just about poetry. It’s about having a tool to make sense of the world, complicated and confusing, all around us. In my class and across our network, we do this with all texts—we want our students to have a framework through which to understand more rigorous, complicated material. Because all of the tools we use to support writing in my class are simple and flexible, they push students to do the bulk of the thinking. As a result, these tools give students more ownership over their work while also making
“STRUCTURE SETS US FREE”

Much of my thinking about writing instruction and instruction more broadly, including the lessons I describe in this unit, has been heavily informed by Lucy Calkins of Teachers College and her Units of Study guides. Last summer, I attended a Summer Institute in order to learn more about her work. In one of the sessions, the presenter framed her approach to essay development as such: “Structure sets us free,” she said, suggesting that we (and, more specifically, our students) need structure in order to have the space and freedom in which to do serious, heavy thinking.

This summer experience came on the heels of a visit I had taken to the classroom of Rue Ratray, a fellow teacher in the Boston area. In his classroom, his sixth graders wrote with confidence, flexibility, and energy in notebooks worn from heavy usage. That’s all they really needed, he suggested—a text, a notebook, routine practice, and constant, in-the-moment feedback from their teacher—in order to do great, hard thinking. In fact, they’d do harder, more robust thinking because they had such purposefully simple tools.

The work we’re doing this morning isn’t just about poetry. It’s about having a tool to make sense of the world, complicated and confusing, all around us. In my class and across our network, we do this with all texts—we want our students to have a framework through which to understand more rigorous, complicated material.

their thinking visible to me, allowing me to give better support along the way.

“There’s much more to poetry than these three components,” I say. “But this will be our foundation—one that will help us to do more with poetry than we’ve ever done before.”

“No Struggle, No Progress”

“No Struggle, No Progress”

“Raise your hand if you’ve ever written poetry,” I say when we come back together for our second class of the day.

All hands shoot up.

“And raise your hand if you’ve ever tried to write a poem and had no idea where to start.”

Students glance around at one another. Then, all hands go up again.

I nod. “We’re going to be writing poetry in this unit, just like poets,” I say. “And today, we’re going to talk about how to get started.”

We take out our notebooks. “Last night, I sat down to write some poems myself,” I begin. “It’s always easy to get stuck. But I started by thinking about people, places, and objects that matter to me—my father, my childhood home, and my wristwatch. I then thought about some of the moments that I associate with these subjects—the time my father had surgery, the time I practiced soccer in the basement, the time I ran a marathon and my watch timed me every step of the way. Finally, I turned these into ‘Little Threes,’ just like we used today in our reading, so that I could envision these moments as poems.”

I show them my notebook. “Now I have this whole bank of poem ideas that I can choose from, and I can use these to write strong, powerful poems that look and feel like poems and that matter to me.”

It’s time for students to give it a shot. For the first time, they face a blank page, and I can sense their initial paralysis and fear. If one of the hardest parts of writing is getting started, then one of the hardest parts of teaching writing is setting students up for take-off. I want “productive struggle”—a balance made all the more complicated by varied skills, abilities, and confidence. Some students are ready to jump in. Others need more guidance. All, in some way, need support. That’s why I’ve spent the first part of class introducing this brainstorming tool that all of my students should be able to use.

Still, I hold back. I want them to think. Some students look at the ceiling. Other students squint at my example on the board.
Still others start drawing webs in their notebooks. Once I see every student working, I make my way across each row, looking over every shoulder. Esme is brainstorming moments about her mom. Stephanie is brainstorming moments about her sister. Chris is brainstorming moments about his soccer ball. Matt asks if animals should be considered people or objects. I pause. “That’s interesting; I hadn’t thought of that. Maybe create a fourth category?” He nods, and starts brainstorming moments about his dog, Scruffy.

Confident that most students are starting to move, I zero in on Alex, Daniel, Adrian, and Julian. Alex’s page is blank. Daniel looks physically pained. Julian is still writing his name at the top of his notebook. Adrian is trying to get his partner’s attention.

I start with Alex. “Hey, bud,” I say, kneeling next to his desk. He stares at his paper. Undeterred, I draw three circles on his notebook page. “Who’s a person that matters to you?”

“I don’t know,” he says.

I pause. “That’s okay,” I say. “We have two other categories we can use. How about an object?” He shakes his head. “Aw, Alex! I know you like to ride your bike. And I know you’ve been using that cool pen recently. So let’s choose—bike or pen?”

He says nothing at first, but something’s starting to flash. After several seconds, it comes out. “Bike,” he whispers, and writes that on his page.

“I don’t know,” he says.

I pause. “That’s okay,” I say. “We have two other categories we can use. How about an object?” He shakes his head. “Aw, Alex! I know you like to ride your bike. And I know you’ve been using that cool pen recently. So let’s choose—bike or pen?”

He says nothing at first, but something’s starting to flash. After several seconds, it comes out. “Bike,” he whispers, and writes that on his page.

“I don’t know,” he says. “We have two other categories we can use. How about an object?” He shakes his head. “Aw, Alex! I know you like to ride your bike. And I know you’ve been using that cool pen recently. So let’s choose—bike or pen?”

He says nothing at first, but something’s starting to flash. After several seconds, it comes out. “Bike,” he whispers, and writes that on his page.

“Okay!” I say. “Now we’re moving. Think about two memories—just two for now—that you associate with your bike. Maybe the first time you got it, the first time you rode it, or a time you used it to ride somewhere. I’m going to check in with some of your classmates, but when I come back, I want you to tell me what you’ve come up with.” He nods. I give him a fist bump. And then I take off.

I use a similar approach with Daniel, Julian, and Adrian, aware that today they need more support than they will later on. As the unit progresses, I’ll step back.

Still, I know that others are ready for more. “That’s excellent,” I say to Joshua, pointing at his topic (riding a roller coaster at Six Flags). Then I point at his description: How I rode a roller coaster at Six Flags. “Push this,” I say. “What was that ride like?” He thinks for a moment, then crosses out his original description and writes below it: How riding a roller coaster at Six Flags was scary but fun. I tap his desk once, give him a thumbs-up, and continue on.

By the end of the class, all of us are sweating. But pages are full. I ask students to share what they’ve generated with their partner, and their voices explode.

Over the next week and a half, I provide students with similar tools to practice additional skills in isolation: figurative language, imagery, sound devices. We do this not through worksheets, but in notebooks, building off the “Little Threes” they had already generated. Notebooks fill up with starts and stops and cross-outs. Hands go up often in these early lessons, with students either desperate to ask questions (How do I do this again?) or eager for reassurance (Is this right?). And a number of students continue to face blank pages with blank faces, simply not sure how to get started.

But that was the point. This struggle is crucial to our progress, I tell students, alluding to the Frederick Douglass quote, not just for this task but for anything worth doing, and I want them to feel this challenge. My job, meanwhile, is to provide them with

This year, Zeke was determined to move poetry writing—meaningful and messy—to center stage.
just enough support to get off the ground and stay on track to acquiring these foundational skills. Seeing what they produce and where they struggle or stride along the way gives me the information I need to do exactly that.

We gain momentum. After a week and a half, ideas emerge more quickly. Stanzas and lines look sharper. Language becomes more vivid. And hands don’t go up as frequently. Students have their notebooks, their tools, and their minds, and they’re using all three. They are becoming poets.

Turning a Corner
We’re two weeks into our unit. “Now, it’s time to write extended poems—poems that we can not only be proud of, but that we can perform in front of one another,” I say.

There’s a gasp in the room and hands shoot up. I backtrack. “Let’s not worry about the performance part yet. We’ll get there.”

If the first part of the unit is where we learn the discrete skills of poetry, then the second part is where we put it all together. Here, our focus shifts to the writing process. Over the next week and a half, our goal is to craft two larger poems that we will type, compile in a portfolio, and perform at a class Poetry Slam. This is what we’ve called our “Thanksgiving Feast” writing, which takes a long time to prepare and produce, as opposed to “Mac and Cheese” writing, which can be generated in a single sitting. I want my students to understand that good writing—or any deep learning—takes time, and that we need to work hard to get there. But the payoff, as with any great feast, will be worth it.

Over the next several classes, students take their two poems through the writing process—brainstorming, planning, drafting, revising, and editing. Throughout, I’m writing ahead of my students, taking two poems of my own through each step. I write so that I can anticipate the challenges my students might themselves encounter, but also so that my students can see what it looks like for writing to progress through the process we’ve outlined together. While students write, I focus on in-the-moment feedback; I want students to see, immediately, how to sustain and improve their work, stepping in just long enough to give students the tools to unlock deeper thinking.

Early in our project work, we’re humming, but I’m worried about revision—one of the hardest parts of the writing process. We face a crucial question that all writers wrestle with: How can I make my work even stronger?

I tread lightly, providing students with a focus, a model of the process and product, and options for revising: They can write directly on their page or on a separate piece of paper. Then, I step back. Fear returns. We push on, but as I glance at my students’ drafts over their shoulders, I don’t think we’ve completely hit the mark. Some students lean over their work, marking up their pages with new lines and language to push their poems further. Other students raise their hands, not sure where to begin. We look at their poems together, and I give them specific suggestions, aiming to step back as quickly as possible and turn the thinking over to them. I want students to own their work—both product and process—and while we’re making progress, we’re not there yet.

Later that week, on a Friday morning wedged between the editing and publishing stages of their project, students are taking a reading quiz, and some finish early. On a whim, I give students the option of taking a piece of loose-leaf and writing additional poems for their portfolio. I’m not sure students will bite. But one hand goes up, then another.

I glance at poem after poem. They’re not polished poems, but students are using—without prompting—the tools and devices from the past several weeks: Little Threes, figurative language, sound effects. This is the ownership I was looking for. Students keep raising their hands. It becomes trickier to navigate the classroom. “Mr. Phillips,” they say, holding their loose-leaf in the air. “Look at this!”

For an event that’s so much about words, it’s the silence before each performance that stands out.

Showtime
Just over a week later, we’re finalizing preparations for our Poetry Slam. We’ve typed our poems on computers and designed front and back covers for the portfolios in which we’ll place the printed versions. We’ve devoted several classes to the performance itself: Students have watched a video of a high school student performing spoken word and analyzed the techniques that poets use to communicate their poems to an audience. They have identified how to best use eye contact, body language, volume, and energy when on stage. They have practiced their own performances with their partner.

In our final preparatory class, students stand by their desks, waving, talking, and laughing. Just like on the first day of this unit, when they shared what they knew about poetry, I strain to catch their words as I circulate the room. But now, these words are the words of their poems.

Only a few days earlier, Sara had raised her hand at the outset of our preparations. “I have a question,” she said, looking tentatively around the room. “Do we all, um… have to perform?”
I paused for a moment. “Yes,” I said. “And you’ll do great.” If I wanted students to really be poets, they had to do this final step. I was making their participation mandatory with the hope that once they stepped on stage, whether nervous or confident, new or experienced, they’d be able to own it.

Before we leave for Community Circle that morning, I say some final words. “In a moment,” I begin, “We’ll kick off our Poetry Slam. You’ve been working so hard for this, and you’re ready. Many of you may be nervous, and that’s okay—that means you’re on your game. Just think: In 40 minutes, we’ll be back in this classroom, and you’ll each have completed your performance.

“It’s rare to have this opportunity in life, when it’s just you, the stage, and the microphone.” I look around the room. I want students to know that what we’re about to do is about poetry, but that it’s also about owning the work of your discipline. It’s about stepping up. And so, before I finally step back, I say my final words: “Make the most of it.”

We exit the room, file down the eighth-grade hallway to Community Circle, and take our seats on those blue plastic chairs. The lights are off. Two tall lamps stand at the front of the room, lighting a makeshift stage. A PowerPoint slide of a curtain is projected on the screen. Then, we begin.

Students are called to the front in alphabetical order, and they step onto the stage with their best poem in hand. For some, the paper shakes in front of their face. Others stand with feet firmly planted.

For an event that’s so much about words, it’s the silence before each performance that stands out. Audience members and performers alike seem to recognize how risky this moment is—and how full of opportunity. Students in the audience take in every word. They snap when they hear something they like. They give “good vibes” when they sense their classmate needs additional support.

Julian steps to the stage. He brings several months’ worth of struggle with him, but his classmates know how hard he’s worked in this unit, and how much he’s improved. In class, they’ve seen him more focused than ever before, his eyes on the paper for longer stretches of time. They’ve seen him more engaged, his hand in the air more frequently. And they’ve seen him more confident.

But they haven’t yet seen him here, in this kind of spotlight. Now, the room isn’t just silent; all breathing has stopped. Julian looks out at the crowd. He takes his final deep breath, and starts to speak.

I stand in the background, shifting back and forth on my feet. I catch each of Julian’s words, thinking, with each of them, how far he’s come. When he finishes, he takes another deep breath, looks out at the crowd, and cracks a smile, full of pride and joy and relief. The silence prior to his performance was deafening. So is the applause that now fills the room.

The “Little Three” gives Zeke’s students a tool to take their poems from brainstorms to final drafts worthy of the spotlight.

I paused for a moment. “Yes,” I said. “And you’ll do great.” If I wanted students to really be poets, they had to do this final step. I was making their participation mandatory with the hope that once they stepped on stage, whether nervous or confident, new or experienced, they’d be able to own it.

Before we leave for Community Circle that morning, I say some final words. “In a moment,” I begin, “We’ll kick off our Poetry Slam. You’ve been working so hard for this, and you’re ready. Many of you may be nervous, and that’s okay—that means you’re on your game. Just think: In 40 minutes, we’ll be back in this classroom, and you’ll each have completed your performance.

“It’s rare to have this opportunity in life, when it’s just you, the stage, and the microphone.” I look around the room. I want students to know that what we’re about to do is about poetry, but that it’s also about owning the work of your discipline. It’s about stepping up. And so, before I finally step back, I say my final words: “Make the most of it.”

We exit the room, file down the eighth-grade hallway to Community Circle, and take our seats on those blue plastic chairs. The lights are off. Two tall lamps stand at the front of the room, lighting a makeshift stage. A PowerPoint slide of a curtain is projected on the screen. Then, we begin.

Students are called to the front in alphabetical order, and they step onto the stage with their best poem in hand. For some, the paper shakes in front of their face. Others stand with feet firmly planted.

For an event that’s so much about words, it’s the silence before each performance that stands out. Audience members and performers alike seem to recognize how risky this moment is—and how full of opportunity. Students in the audience take in every word. They snap when they hear something they like. They give “good vibes” when they sense their classmate needs additional support.

Julian steps to the stage. He brings several months’ worth of struggle with him, but his classmates know how hard he’s worked in this unit, and how much he’s improved. In class, they’ve seen him more focused than ever before, his eyes on the paper for longer stretches of time. They’ve seen him more engaged, his hand in the air more frequently. And they’ve seen him more confident.

But they haven’t yet seen him here, in this kind of spotlight. Now, the room isn’t just silent; all breathing has stopped. Julian looks out at the crowd. He takes his final deep breath, and starts to speak.

I stand in the background, shifting back and forth on my feet. I catch each of Julian’s words, thinking, with each of them, how far he’s come. When he finishes, he takes another deep breath, looks out at the crowd, and cracks a smile, full of pride and joy and relief. The silence prior to his performance was deafening. So is the applause that now fills the room.
As the daughter of two special educators, teaching is in Erin Dukeshire’s genes—but science is in her heart. Now teaching sixth-grade science at Orchard Gardens K-8 Pilot School in Boston’s Roxbury neighborhood, she has helped transform the school from one of Massachusetts’ lowest-performing to one of its fastest-improving.

Erin’s passion is not merely teaching science, but cultivating future scientists. That’s why, early in her career, when science standards and assessments were focused almost entirely on content, Erin decided to spend at least a quarter of her time with students on the practice of science and inquiry skills. Her students are now frequently writing their own hypotheses, collecting and analyzing data, and drawing conclusions. “My students are teaching themselves science by running experiments and building models,” she says. “They have to talk, they have to write, and they have to develop a vocabulary to work together.” The approach makes for an inspiring classroom where students thrive; incoming students who average between 0 percent and 5 percent proficiency on the fifth-grade science MCAS advance to an average of 60 percent proficiency on science assessments aligned to the same state standards during their sixth-grade year.

A graduate of Bowdoin College with an MA in Teaching from Simmons College, Erin got her start as an educator 10 years ago in Miami-Dade Public Schools. Over the years, she has focused not only on honing her teaching abilities (even visiting Cape Verde to better understand her Cape Verdean immigrant students’ backgrounds and perspectives), but also shaping her profession as a teacher leader, a Teach Plus Fellow, an America Achieves Lead Fellow, and a 2012 recipient of the Presidential Award for Excellence in Mathematics and Science Teaching. Today, equitable access to science in college and career is her mission. “There’s always talk about math and English with standards and standardized testing,” she says. “But science is too often left out of the conversation.”

Erin is always questioning herself and those around her: Are we doing right by our students? Is this enough? But what separates her from a lot of other science teachers is her interest in ensuring that students can actually practice science, not just understand it in the abstract. Her students master lab skills as a means of engaging with the material—and the world—in a deep way. In the end, she revels in the big questions that draw us all to science, and gets her kids asking those questions too.

In Erin’s essay “Becoming Scientists,” she explains how she constantly checks her students’ understanding of difficult concepts by having them model and discuss what they already know—and what they’re learning.
A few years ago, a sixth grader named Claudia taught me an important lesson about learning when I called her to the back of the room during a test. She was a beginning English speaker, and I wanted her to supplement some of her written answers with conversation.

I peeked at a few of her completed answers. She had rocked the multiple-choice questions about photosynthesis—not even one mistake. And she correctly labeled a diagram of the process, too.

“Okay, Claudia. I have a question for you. Does a plant eat?” I smiled, ready to record notes about the awesome explanation she was about to give.

She thought for a minute, looking at the Boston skyline through our huge classroom windows.

“It eat the plant food. My grandma give the plant the food. You know, in the package. And it does photosynthesis.”

This answer was a huge disappointment. Claudia had learned all the content from the unit, but she was still missing the big concepts. I wanted students to understand a fundamental difference between plants and animals: Plants produce their own food instead of eating. Claudia had hung on to the idea that plants needed to be fed, even while she became confident with the details of photosynthesis. What could I have done differently to help her come to a deeper, more evidence-based understanding?

Throughout the unit, I had been “checking for understanding” by pausing lessons to gauge student progress toward the day’s objective. A thumbs-up to show an answer was true. A card to show an answer to a multiple-choice question. Longer, written responses revealed traces of confusion, but I could not probe student thinking quickly or deeply by grading written responses in the evening. Claudia showed me that the scope of these checks for understanding was too limited.

Years later, my classroom is different. Checks for understanding are not pauses in the lesson—they are happening all the time, and they provide a complete picture of students’ thinking. I design lessons that constantly invite all students to externalize their ideas through discussion and visual representation, examining and revising their understanding along the way, and showing me when and how they need support.

For my students, this means a deeper, more evidence-based understanding of scientific concepts and opportunities to learn like scientists do, whether we are studying plants, chemical reactions, or the solar system we call home.

Hypotheses
It’s the opening day of our astronomy unit, and students scurry to their lab groups before I finish my countdown. Carlos spreads easel paper and markers in the middle of the table. Ivonné, the group’s “Goal Master,” is in charge of keeping everyone on task. “Okay, let’s start. Each of us gonna have a turn,” she announces.

Today, the task of Ivonné’s group is to draw what they know about space, an open-ended assignment to check prior knowledge. The class asks a few questions about what I mean by “space,” but I shrug playfully in response, intentionally vague. Their picture will be a visual hypothesis, a hunch about what makes up space, based on previous learning and assumptions, as well as wild imagination and creativity.

This assessment is collaborative, so students need to verbally negotiate their ideas with their group to produce a single, shared piece of work on their poster. Listening to them discuss and debate the concepts helps me check on their ideas as they draw.

Ivonné’s group launches into a discussion in their native language of Cape Verdean Creole. When we begin a unit, my students talk in whichever language helps them communicate most completely. Cognates and the English they mix into the conversation help me understand large parts of what they are discussing.

I listen carefully as José asks his group, “Mundu, mundu… what color is the world? Azul? Verde? Burmedju?”

“Oh yeah, it is colorful. ‘Cause there’s plants. I think it’s green,” Ivonné responds.

Carlos adds, “Aren’t they green, all of them?”
At this stage of a unit, making sense of students' ideas can be really difficult, even when they are speaking English. But I hear that, for this group, colors have meaning. Green for plants, and blue or red for extreme temperatures. They use color because they haven’t yet developed the language to communicate their questions and ideas about planets’ conditions.

I scan the five brightly colored posters at other tables. The students’ work shows a great deal of wonder, imagination, and attention to detail. Flying saucers race across pages. Black holes appear as dozens of small dots and as large, exploding blobs. Malik, an avid reader of non-fiction, draws a vivid asteroid belt. I observe all of these details, even if they are not directly required for the standards in this unit. Often, seemingly offbeat ideas resurface later as clues when I need to make sense of student thinking about standards-based content.

Nearly every poster is filled with planets, but the universe in my sixth graders’ minds ends with Neptune and Pluto. I begin to consider which texts and videos will help them understand the smallness of our solar system with its eight planets, relative to the enormity of the universe.

In the back of the room, one group begins to raise their voices. Aniyah has suggested that the group needs to give the planets “circles,” and Cristina begins drawing a spiral that connects all of the planets.

“Nooooo,” Malik corrects them, urging them toward what many of us know as the familiar diagram of the solar system. “You don’t make a spiral. You make a new one and a new one.”

“Who wants to do it this way? Two against one,” Aniyah argues back.

The group is in a tough position. We have not yet established academic vocabulary, so everyone is a bit confused. And we do not yet have any evidence to help us settle this disagreement, so “two against one” becomes the winning argument.

Malik shakes his head at his group.

One of my roles is to mediate conflicts like these. Collaboration is key to scientific learning, so I want my students to consider all opposing ideas. This is the work of real scientists.
Collecting Evidence

As students enter the room the next day, they see their posters hanging on our “Wall of Prior Knowledge.” I invite them to gather along the wall in a semicircle to examine their images of space.

They notice many common elements, but plenty of differences, too. Roy, a student from our school’s autism program, points to the sun in each picture, and I wait to hear students spot discrepancies in their own work, without needing feedback from me.

Angel exclaims, “Uno es muy grande!”

Cristina translates: “One is very big.”

From the chaos of their awesome yet confusing posters, students are calling out their hypotheses about sizes of objects in space. With a little more prompting, they are soon debating how planets move and whether stars and galaxies belong between planets, or far away.

Here’s one reason why I encourage my students to put all their ideas on the table and debate them at the start of our units: Earlier in the year, a biologist wrote a letter to my students to explain the value in generating many hypotheses. Coming up with all possible explanations helps her collect the best and most complete evidence she needs to answer her questions. This is how scientific learning happens—for professionals, and for children. Just like the biologist’s many hypotheses, the students’ drawings of space will guide their search for evidence.

After the discussion, I introduce a textbook passage that challenges many of the assumptions I saw on the posters. Students get into groups and hunt furiously for textual evidence that supports or refutes their hypotheses. Their voices fill the room, signaling to me that they are clarifying and revising their thinking from the day before.

“Look, there are eight. What happened to Pluto?”

“How can the sun be that big?”

“Whoa, Jupiter really does have 67 moons! Malik told me yesterday, but I didn’t believe him.”

There is no way students would be this excited if they were just being guided by a teacher. Instead, their work is at the center as they test ideas from their own words and pictures. Just as importantly, eavesdropping on their debates gives me a chance to monitor their thinking in real-time, so I am less likely to miss the opportunity to challenge a hidden assumption, like I did years ago with Claudia.

Grappling With Evidence

Claudia showed me that just because a student tells me details from a text, or summarizes experimental data, she has not necessarily revised the prior understandings she brought to our classroom. That’s why, now that students have gathered some textual evidence, I want to see what this evidence means to them. Is the text helping them re-envision our solar system as a single unit in space, made up of objects revolving around other, more massive objects? Are they approaching the understanding that in many ways, Earth is not all that unique?

To check their understanding, I have students make a model of the solar system that will reveal whether they are using the text to revise their initial ideas. Our model is no traditional arts-and-crafts project with painted Styrofoam balls glued on a poster. That kind of student work would not check their deep conceptual understanding. Instead, our model is more of a dance, or a play, in which students use their bodies to act out concepts. (It also reduces time spent creating materials, and makes their thinking visible from anywhere in the room.)

Each group heads to a spot around the perimeter of the room as I watch from the center, looking for revisions to students’ understanding after yesterday’s reading. I watch for criteria in the five categories listed on the board: objects, sizes, numbers, locations, and movements.

Cristina calls me over to her group. “We need more people to be all the stuff. Can we ask them to work with us?” The groups merge, and they get tape and markers to make nametags that read “sun,” “planet,” and “moon.” They give several planets moons, not just Earth. I note this evolution in their thinking and check off criteria on my clipboard.

I spot an error in the relative sizes of the sun, planets, and moons, and spin around to find the same mistake in three other groups. Yesterday’s work with the text is not yet fully incorporated into students’ mental images of the solar system. I call the class together quickly with a flick of the light switch.

“Turn to the reading from yesterday, and put your finger on one place where the text compares the size of the sun to the planets.” I wait for every finger to locate an answer. “What did you find?”

One student reads that the sun is more massive than anything else in the solar system, and another describes a diagram.

“I’m seeing some mistakes with that,” I say. “Fix that, and then move on.”

I circulate to groups that need to correct their representation of sizes. (For now, students’ height works as a proxy to show how massive they think objects in space are, since they will
learn more about mass next year.) Ivonné, whose nametag shows she is Jupiter, squats as she walks in her orbit to make herself shorter than Aniyah, who is playing the sun.

Looking around, I see a group near the door making quick progress, and I decide to push them further. Before class, I queued up several animations and simulations on my computer, in anticipation of students’ needing new challenges or extra support. They huddle together around my computer, as I play an animation of orbiting planets.

"Whoa, they’re all moving at different speeds," notices Malik. "That one on the outside is going so slow, but the first one is fast."

"Hmm, I wonder if you could add that detail," I challenge them.

Throughout the hour, I watch the students’ models match evidence from the text and video with increasing accuracy. When we gather the next day for the performances, core understandings are visible in each group’s work. Students representing smaller planets, or in some cases colorful balloons brought from home, orbit students representing larger planets, and everyone travels around the sun. The solar system does not spread across space, but is instead bound by the orbits of the outermost students. Earth is not the most massive planet, nor is it the fastest. Its moon is not that special, compared to Ivonné’s Jupiter and the many moons that revolve around her.

This is the kind of deep, foundational understanding my students need before we can leave the solar system to explore the rest of the Milky Way galaxy.

Drawing Conclusions

Two weeks later, we are nearing the end-of-unit astronomy test. Students’ drawings show huge improvements, compared to the pictures of space from the beginning of the unit. Galaxies are scattered across the universe and filled with stars. Planets revolve around some of these stars, moving along carefully drawn orbits. Many impressive details in students’ work extend beyond my own grading criteria, like reasonable guesses at locations of black holes.

Today, review stations will provide one last chance to reshape assumptions about space that do not match with evidence we have read, collected, and studied during the unit. I pair students with similar achievement in this unit. I want them to hear each other’s thinking, and I want to hear them, too.

At the stations, students sort colorful cards with large, printed text. They complete answer sheets that are designed so I can easily check their understanding. Sandra and Carlos need to make the biggest leaps during today’s class, so I stand alongside them while scanning the room for victories and errors. Malik and Aniyah place a card in the “true” pile after an animated debate, and I shout across the lab, “I see a mistake! Kepler telescope article, paragraph three! Figure out why you’re wrong.”

Malik and Aniyah catch flaws in their own arguments, but others need more help finding their mistakes. These students are sent to classmates who have proven themselves as experts, like Cristina, who peers over her glasses to ask, “How could that possibly be true?” Every error is met with a resource or “Remember when we….?” to help students arrive at a more “right” answer, according to current scientific evidence.

Checking answers against evidence and revising their understanding, students work furiously until just before the bell rings.

New Questions

Before I taught Claudia about photosynthesis, checking students’ work for right answers felt like the foremost priority in my lessons. Students clearly valued academic achievement. A right answer in class or high scores on difficult assessments always resulted in smiling faces. However, when my checks for understanding valued “right” answers, rather than questioning and revising prior assumptions, I was not doing enough to foster the curiosity that scientists need to bring to their work.

Instead, when students make their thinking visible and open up their ideas to feedback, they are full of questions. When sorting “true” and “false” statements about space, they pause to think through their new understanding. “Wait, didn’t we read that the Kepler telescope found planets orbiting other stars? So are there really more planets out there?” This time, the check for understanding gets them to consider how new evidence must change their ideas about the universe, just as it does for scientists.

Then, as students approach a deeper, more evidence-based understanding, their wonder and imagination are fostered, rather than halted. Do the planets in other solar systems have moons? Do they support life? Are there planets in other galaxies, too? The stronger students’ conceptual understanding, the more their questions mirror the questions professional scientists are currently asking.
have moons? Do they support life? Are there planets in other galaxies, too? The stronger the students’ conceptual understanding, the more their questions mirror the questions professional scientists are currently asking.

These new questions also emerge for topics that are less obviously engaging to students than space. Sandra had no questions about the ocean floor when we began studying geology because she imagined the ocean was a bottomless expanse of water. A few weeks later, she raised her hand. “If the ocean is flat, why is it…” One of her hands was held straight to show the ocean’s surface, while the other mimed underwater mountain ranges. Not only was she showing a revised vision of the ocean with a vast floor of varied topography, but she wanted to know how it got that way.

Another time, Carlos shot his hand in the air while we were watching a cheese puff burn for a demonstration about food energy. He called upon his rich understanding of melting points, gained through cycles of showing and revising his thinking, and asked, “Do substances have a fire point, like they have a melting point?” I cackled with delight. He was proposing the concept of a combustion point.

My teaching has evolved since I taught Claudia, and when we study photosynthesis this year, I pack the unit with opportunities to check students’ understanding with models, discussion, and hypotheses. During one lesson, I spot a group that predicts plants with fertilizer will grow more than others because they are getting “food.”

We talk for a few minutes, and then Aniyah looks up. “Miss, if plants make their own food, what does plant ‘food’ do?” This is the question I never got Claudia to ask because I was only checking whether she understood the “right” answers.

I flip over the group’s paper and write Aniyah’s question at the top of the blank page. “Let’s find out. What are your hypotheses?”

As the group returns to work, possibilities spill from their minds onto the paper in front of them. Aniyah and her classmates are learning differently than Claudia did when she was in my class. Now, with student thinking on display and constant checks for deep, conceptual understanding, my students are not just learning science. They are becoming scientists.

In Erin’s classroom, students model their knowledge in ways that actively—and physically—engage them with the content.

TALKING WITH EXPERTS

When students show a lot of interest in topics that are tangential to the concepts we are studying, I invite a professional scientist to a video chat with the class. Inviting scientists to interact with students enriches my classroom because they get students excited about sharing their thinking. In these visits, the scientist talks briefly about his or her work, but most of the time is dedicated to student questions. They’ll ask, “Are black holes the biggest things in the universe?” and even questions I would never think of, like “Do fossils smell?” They often get fascinating answers.

Scientists also offer new perspectives on students’ work through these virtual visits. A botanist challenged a group of students to dramatically increase the sample size for an experiment they designed, and then praised their data. “Your lab notebook looks better than my grad students!” Seeing a professional express interest in their learning encourages my students to implement feedback and show off their skills.
“People tell me that my kindergartners can’t do this, but I know they can,” says Erica Mariola. “I see them do it every day.” That spirit defines her classroom, where she taps the endless energy and curiosity of her five-year-olds to jumpstart their first year in school. It’s the kind of place where students aren’t just learning about shapes, but the vertices and sides of triangles, and where “counting bears” happens on ten-frames. And her students are thriving. On average, they enter Erica’s class in the 24th percentile in math according to the NWEA MAP Assessment. They leave the classroom, on average, in the 56th percentile, with more than 40 percent of the class performing above the 75th percentile nationally. Erica’s class is one of the highest-performing kindergarten classes in the city of New Orleans.

A deep commitment to rigorous early learning isn’t the only thing that sets Erica apart; her path to teaching was unconventional. After graduating from Emory University in 2002, Erica conducted research in a neuroscience lab for four years and lived and worked in Cameroon as a surrogate mother for orphaned primates. Afterward, she worked in development for Teach For America before joining the program herself, ultimately teaching for six years as an elementary special education teacher in Atlanta Public Schools before making the move to New Orleans as a founding teacher at KIPP East Community Primary.

At KIPP East, Erica has gained the trust of her students’ families because she treats the kids in her classroom like they’re her own. Yet she also knows it’s not enough just to love them. They need to be challenged, and she has no patience for people who think five-year-olds should be treated with kid gloves when it comes to learning. In Erica’s classroom, learning and playing are one and the same.

In her essay “My ‘Friends’ are Teachers, Too,” Erica describes how she turns her students into teachers by giving them opportunities to share newfound writing and math skills with their classmates.
There’s so much talk about what’s “developmentally appropriate” for young learners, as if all they can do in the kindergarten classroom is play. But childhood joy doesn’t have to come at the expense of learning, especially when many of my students arrive already lagging behind children in other neighborhoods.

“Come on, ‘Nya. What’s this letter?”

Anaya’s tongue is pressed up against her teeth, mouth open as if she’s about to say something. The silence is long and uncomfortable as the teacher waits, clutching a flashcard of the letter M. Anaya stares as if the answer were on the tip of her tongue.

“I’m not playing with you, Anaya. You want me to just tell you the answer? You know this letter.”

Anaya presses her lips together and makes the ‘Mmmm’ sound.

“Yes, Anaya! That’s the sound the letter makes. What’s the letter called? You know this, ‘Nya. You better not say ‘W’!”

Anaya lights up and shouts, “M! Mmmmm….”

“Good job, friend!” The teacher hands Anaya the flashcard and gives her a hug.

I’m sitting next to the two of them on a brightly colored carpet in my kindergarten classroom. For this lesson, the “teacher” is Bria, a five-year-old who knows that her friend Anaya is very smart and will manipulate people into giving her the answer. But Bria won’t let Anaya slide by. She just recently mastered letter identification and sounds herself.

Both girls entered my class a few months ago as four-year-olds who did not attend Head Start, or any kind of pre-K, for that matter. They could sing their ABCs, but could not identify or write any letters.

My first memories of Bria involve her grasping a fat pencil in her chubby fist and telling me that she was “gonna write somethin’” as she proceeded to draw squiggles. I would ask her what she was writing and she would say, “I don’t know. Just somethin’.”

Many people have low expectations for what my students can do academically, given their age. There’s so much talk about what’s “developmentally appropriate” for young learners, as if all they can do in the kindergarten classroom is play. But childhood joy doesn’t have to come at the expense of learning, especially when many of my students arrive already lagging behind children in other neighborhoods. They may be five—and I may call them “friends” instead of “scholars”—but what they are able to do is astounding. In my kindergarten classroom, these five-year-olds learn by leading discussions, explaining their thinking, and analyzing the work of their peers. Learning spreads from one child to another as students teach one another what they know.

Bria was right. She didn’t know what she was writing, but soon she would—with the help of her friends.

My Friends Love to Write

On Wednesdays, we have a shorter school day. My friends always get upset that it interferes with their writing block. When I let them know that we are going to recess, they erupt in a chorus of, “But we always write before recess!” I’m glad that my students love to write. I want them to feel that way forever.

Every day, we have a scaffolded writing block. This doesn’t mean my entire class of five-year-olds writes full sentences, or even words, just yet. The form of their writing (scribbles, lines, initial letter sounds, invented spelling, actual word patterns) depends on where each student is in his or her writing development. I spend five minutes modeling the process and may highlight a specific trait or feature to focus on. After that, they are released to their tables to draw and plan what they will write about. Crayons are whizzing all over papers and some will call me over to admire their masterpieces. “Look, Ms. Mariola! Look at my picture! I’m gonna write about my birthday!” (Having a birthday is the most beloved event in the history of a five-year-old’s life.)
Once they’ve completed their pictures and contained their excitement, they will have 10 to 15 minutes to write on their own. The students are encouraged to sound out each word and write as many sounds as they hear in each one. My co-teacher and I circulate around the room, offer encouragement, and ask follow-up questions to help students who appear “stuck.” They know we won’t tell them how to write a word—they must sound it out themselves. Their invented spelling shows me their understanding of phonemes in words and their grasp on alphabetic principle. Over the course of the year, it will evolve into conventional spelling as students learn word patterns and progress in their understanding of phonics. Some students will literally go from squiggles to sentences by the end of the year.

The most essential part of this writing block is the last 10 minutes. Every day, my friends join me on the carpet to look at the writing they just produced, which I display on the board with the document camera. They are always excited. Some bounce with glee. “Read mine, Ms. Mariola! Read mine!”

The excitement of seeing their work or the work of their classmate amplified on the giant screen makes them feel special and shows them how important their writing is. It’s right there in the center of the room, capturing everyone’s attention.

We look at a range of student work so that they can see the progression of writing in the class. We always praise and compliment the writer’s work and discuss its strengths. Kindergartners are never in short supply of compliments.

“Oh, I like cats too.”

“Hey, I like the way you drew that cat.”

“I like the way you wrote ‘cat’ in a sentence.”

I appreciate how generous they all are with their love, but if I don’t intervene at this point, our talk of cats will become a black hole from which we will not escape. To generate a more focused discussion, I ask them what each writer did well. I try to keep this discussion as student-led as possible, only interjecting to steer the conversation back on track if necessary. Then I ask what the writer could do differently to make her writing stronger or clearer tomorrow. I’m always impressed by what they will come up with if I stay out of the conversation.

“She could leave some more spaces between her words so it’s easy to see.”

“She can use an uppercase letter in the beginning of the sentence.”

“She could write another sentence at the end when she has more time later.”

There’s something about looking at peer work that makes sense to them. By evaluating a range of student writing each day, my friends are becoming better writers.

Tah’Lor was my first student to consistently and accurately punctuate sentences. She was my most prolific writer and her classmates loved to look at her writing. The day that she punctuated all her sentences, there seemed to be a palpable energy in the classroom. Before I could even pose a question to the class, hands shot up.

Even students in the earliest grades can tackle challenging work.

In Erica’s classroom, students take on the role of teacher, demonstrating their thinking for their friends.
There was something about seeing punctuation in another child’s writing that made the concept clearer to them. It was as if there were a bright shining spotlight on Tah'Lor’s punctuation marks and every student in class could see them.

“Tomorrow, I’m going to use periods at the end of my sentences like Tah’Lor!”

“Oh! Tah’Lor used periods! That looks good, I’m gonna do that, too.”

I read Tah’Lor’s piece in one big breath without pausing at the periods; then we choral read the piece as a class, dramatically pausing at each period, so they could hear the difference. The following day, a few more students attempted to use punctuation in their writing.

I could take credit, but they really learned it from Tah’Lor. They treated Tah’Lor’s punctuated sentences like they’d never seen such a thing before. It didn’t matter that 20 minutes prior, I had written punctuated sentences on the board, or that for months, we had been reading books with punctuated sentences. There was something about seeing punctuation in another child’s writing that made the concept clearer to them. It was as if there were a bright shining spotlight on Tah’Lor’s punctuation marks and every student in class could see them.

My Friends Are Mathematicians

The same approach works just as well in math. Each day my students closely study one word problem that they all model and solve on their own. This extra problem-solving block is in addition to our regular math lesson. I’ll yell out, “Problem of the Day!” and the students yell, “Hooray!” as they bounce in their respective squares. The next three minutes will be the only portion of this lesson that is teacher-led. I’ll tell an animated version of the word problem with hand gestures depicting the action of the story. Each problem ends with a question that they need to think about and solve: “Justin loves to eat Skittles. Yesterday he had a bag with 25 Skittles! He ate 15 of the Skittles. How many Skittles are left in the bag?”

Every time I ask the question, I give them an exaggerated expression of puzzlement and hold my hands aloft in bewilderment. This never fails to get them excited about the work ahead. Then I reveal the word problem on chart paper and read the problem to the students fluently. The rest of the work and the teaching will come from them. I step aside, and the bulk of the cognitive work is put on them.

I remove the chart paper and ask someone to tell the same story to the class from memory. The first name I call will be a student with a strong mathematical ability and a good memory. A student like Ferrari will stand in front of her classmates, tell the story again, and ask the question. Everyone will repeat the same bewildered and exaggerated shrug to emphasize the question. Ferrari sits and I call on someone else to retell the story to the class again. After that retell, a third student will be called upon to tell the story one last time. The last student I call on is usually someone who struggles with either math or oral comprehension, like Joshua. He’ll be set up for success because he has heard the story four times prior to his turn. He’ll tell the story for the fifth and final time. Hearing four different voices tell the same story five times helps the students remember and understand the problem.

Before they are released to their tables to solve the word problem, I pose a comprehension question to check for understanding and flag children who might get “stuck” solving the problem. I need to make sure that they have a sense of the underlying operation of the problem. If we have a subtraction problem where Justin had 25 Skittles in a bag and ate 15, I might ask the students if he would have more or less than 25 Skittles remaining in the bag. I need to assess if they understand that when Justin eats the Skittles that they are gone. Students offer a thumbs-up if he would have more than 25 Skittles remaining and a thumbs-down if he would have fewer than 25 Skittles.

Once I jot down who seems to be misunderstanding the problem, I call on Symphony, who gave a thumbs-up, to explain why. She explains her thinking to her classmates. I do not correct her or explain why Justin would not have more than 25 Skittles remaining. Instead, we hear her rationale, and then I call on Mekhi, who gave a thumbs-down, to explain his thinking. I will let the students process and assess their classmates’ explanations on their own, without offering the correct answer.

When the friends go back to their tables, they will each have a plastic box of base ten blocks laid out for them to model the problem. My co-teacher and I walk around to each table and watch the various ways the students attack the problem. We are looking for a variety of strategies and an understanding of base ten. If I notice that Trenell is grabbing two ten sticks out of her box, I will sit down next to her and ask her why. “Because I know that two tens make twenty... so I grabbed two ten sticks from my box... and five more makes 21, 22, 23, 24, 25. See, Ms. Mariola? Twenty-five.” I’ll give Trenell a high-five and watch her proudly model the rest of the problem with the blocks.
That sort of mathematical reasoning is what I am looking for, so I might ask Trenell to present when we go back to the carpet to talk through the problem as a class. In the meantime, I will hand her a piece of paper where she will draw her strategy and then write a number sentence or equation that corresponds, plus an additional sentence about the problem. Not all students will complete each step of the written record. Students who can solve the problem quickly have the opportunity to extend their understanding and stay on task, while those who take longer to process the math in the problem will just work on solving and modeling the answer with blocks.

We come back together for a discussion that is entirely student-led. The class assembles on the perimeter of the carpet, facing two classmates who have their boxes of blocks in their laps. Presenting your strategy to the class is one of the most coveted experiences in our classroom. Each of the lucky two will take a turn reconstructing the problem for their classmates. This provides the whole class an opportunity to watch two different solutions to each problem. I will stand off to the side, drawing out their strategies on chart paper and interjecting to ask clarifying questions. I’ll ask the rest of the class how the two strategies differ. It always blows my mind to see two five-year-olds approach a word problem in two very different ways and explain that difference to their classmates.

Charles was my first student to start using a ten stick instead of counting out 10 individual blocks. As they did with Tah’Lor’s punctuation, Charles’ classmates noticed right away that it saved time to pull a stick of 10 and count by tens when dealing with larger numbers, rather than individually counting each block. The next day, when Shawn was solving his Problem of the Day, he used ten sticks “like Charles did yesterday.” Over time, more and more students started using ten sticks; this strategy had permeated the classroom.

I didn’t always teach math this way, in part because I didn’t learn this way. When I was in school, the teacher would display a problem, show us a process to solve it, and we would spend the remainder of the time solving practice problems. I was never taught the “why” of problem-solving. As an adult, I couldn’t explain why I did anything with numbers; I just remembered the processes. As a result, my first few years of teaching math were not compelling.

At the time, I found it notable—and frustrating—that the way I taught reading was so markedly different. I modeled my thinking for students, but the bulk of the lessons were spent in student-led discussion. I wanted my math block to feel the same, but didn’t know how to make that happen.

That all changed the summer of my fifth year teaching. I was coaching new teachers at summer school. Our district was rolling out the Problem of the Day block, which was based on Sherry Parrish’s book *Number Talks*. Teachers would introduce a word problem and facilitate a student-led discussion on the different strategies they used to solve each problem. As students started grappling with these problems, we learned there was no one way to solve a problem. There were multiple ways to solve every problem, and most of them I would never have considered. I learned more about math that summer than ever before—and it all came from the students.

I wasn’t the only one who learned a lot with this new approach to math. The students were learning from each other, noticing things about how other students attacked a problem that made sense to them. They were borrowing strategies from their classmates to solve problems. They were also able to talk about math in a meaningful way. Their discussions made the classroom feel alive with energy. I was finally in a math class that felt like my reading class: full of rich discussions that were engaging and student-led.

The student-led classroom doesn’t just work for me. It works for my students, too. Last year, my class made incredible gains in math and literacy. Bria’s squiggly “somethin’” transformed into the beginnings of paragraph writing. On one of our last days of kindergarten, I lay next to her at naptime, enjoying the peaceful sound of 25 sleeping five-year-olds. Bria shattered the silence by yelling in my ear:

“Ms. Mariola! Remember when I didn’t know all my letters and I used to call S ‘snake’?” she asked. “Now I know all my letters and I can read.”

I laughed at the memory and told her I remembered. Those days seemed like a very long time ago.

Letting the Friends Take the Lead

I didn’t always teach math this way, in part because I didn’t learn this way. When I was in school, the teacher would display a problem, show us a process to solve it, and we would spend the remainder of the time solving practice problems. I was never taught the “why” of problem-solving. As an adult, I couldn’t explain why I did anything with numbers; I just remembered the processes. As a result, my first few years of teaching math were not compelling.

At the time, I found it notable—and frustrating—that the way I taught reading was so markedly different. I modeled my thinking for students, but the bulk of the lessons were spent in student-led discussion. I wanted my math block to feel the same, but didn’t know how to make that happen.

That all changed the summer of my fifth year teaching. I was coaching new teachers at summer school. Our district was rolling out the Problem of the Day block, which was based on Sherry Parrish’s book *Number Talks*. Teachers would introduce a word problem and facilitate a student-led discussion on the different strategies they used to solve each problem. As students started grappling with these problems, we learned there was no one way to solve a problem. There were multiple ways to solve every problem, and most of them I would never have considered. I learned more about math that summer than ever before—and it all came from the students.

I wasn’t the only one who learned a lot with this new approach to math. The students were learning from each other, noticing things about how other students attacked a problem that made sense to them. They were borrowing strategies from their classmates to solve problems. They were also able to talk about math in a meaningful way. Their discussions made the classroom feel alive with energy. I was finally in a math class that felt like my reading class: full of rich discussions that were engaging and student-led.

The student-led classroom doesn’t just work for me. It works for my students, too. Last year, my class made incredible gains in math and literacy. Bria’s squiggly “somethin’” transformed into the beginnings of paragraph writing. On one of our last days of kindergarten, I lay next to her at naptime, enjoying the peaceful sound of 25 sleeping five-year-olds. Bria shattered the silence by yelling in my ear:

“Ms. Mariola! Remember when I didn’t know all my letters and I used to call S ‘snake’?” she asked. “Now I know all my letters and I can read.”

I laughed at the memory and told her I remembered. Those days seemed like a very long time ago.
MORE GREAT TEACHING
Our winners represent just a small sampling of the amazing teachers nationwide who are committed to constant improvement throughout their careers. There are thousands of educators doing similarly great work across the country—each with a story to tell. We’d like to extend our thanks to the hundreds of teachers who took the time, thought, and effort to apply for the Fishman Prize, and especially to our accomplished finalists. Learn more about them at tntp.org/fishmanprize2015.

ABOUT TNTP
TNTP believes our nation’s public schools can offer all children an excellent education. A national nonprofit founded by teachers, we help school systems end educational inequality and achieve their goals for students. We work at every level of the public education system to attract and train talented teachers and school leaders, ensure rigorous and engaging classrooms, and create environments that prioritize great teaching and accelerate student learning. Since 1997, we’ve partnered with more than 200 public school districts, charter school networks and state departments of education. We have recruited or trained more than 50,000 teachers, redefined critical education issues through acclaimed studies like The Widget Effect (2009) and The Mirage (2015), and launched one of the nation’s premiere awards for excellent teaching, the Fishman Prize for Superlative Classroom Practice. Today, TNTP is active in more than 30 cities. tntp.org
HOW TO APPLY FOR THE FISHMAN PRIZE

The 2015 Fishman Prize winners are the fourth cohort of what we hope will become a long tradition of excellent teachers who will share their insight into the classroom, making this paper an annual resource for what’s best—and current—in classroom practice. That starts with next year’s winners. For more on how you can apply to the 2016 Fishman Prize, visit tntp.org/fishmanprize.

NOMINATE A TEACHER FOR THE FISHMAN PRIZE

Do you know a great teacher making a difference in the lives of low-income students every day? Nominate him or her for the 2016 Fishman Prize. Any full-time teacher working in a high-poverty public school is eligible, and each winner receives $25,000 and a summer residency with TNTP. For more information, visit tntp.org/nominate.